

Angular for Beginners: Part 2 Modules,
Components & Directives.
 By Tuba Mansoor

In this first part of this series we discussed how to get started with Angular.

In this second part we will discuss Modules, Components & Directives in Angular. It is recommended

that you go through the first part, as the demo in this article is in continuation to the earlier part.

Modules
A module in angular is a group of components, directives, services etc. We will be having a look at

each of these terms soon. Basically, think of module as a group.

By default we will have a file app.module.ts generated as below. It will be decorated with the

directive @NgModule, which tells angular all the components, directives etc. that we will be using in

our module.

App.module.ts file will list all the other modules and components that are imported. You will find

that the first three lines import external modules. The Browser module is imported from the

platform-browser package situated in the src folder. The second line imports the NgModule that is

required because we are using the directive @NgModule. The third line imports the

AppRoutingModule, which we will discuss when we learn about routing.

These external modules that are imported are mentioned in the imports section.

The fourth import, imports AppComponent. This is a component that is present in our current

module. Hence it is mentioned in the declaration section.

You will find that underneath the providers, there is bootstrap mentioned. This specifies angular to

load AppComponent at startup.

https://taagung.com/angular-tutorial-1/

Where is AppComponent declared? Goto app.component.ts file and you will find it there.

Remember how we discussed angular is a single page application? This page is index.html. If you

navigate to the index.html, which is your default page, it will have <app-root></app-root>.

This app-root can be found below:

So basically, angular knows that it has to show AppComponent on startup.

Before we move on to Components, can we create multiple modules in our application? Yes sure we

can. We will always have a root module, which will be starting module and the other modules will be

called feature modules. To use them, you have to import them first in you root module.

When we have a huge application, it is a good idea to have multiple modules for implementing

different functionalities. A shared module can be created for housing shared functionalities,

Components
Components is the view, similar to the view that we have in MVC architectures. It will consist of

template(html) + class (properties,methods written in Typescript) and metadata (some extra

information).

Goto app.component.ts

Here you have an AppComponent class in typescript. You also have a templateUrl that specifies the

html for the view and the rest is all metadata.

Let’s create a component Employee.

You can create it by writing the following command in the CLI. For this create a new terminal.

ng generate component employee

This will create a new component employee. Angular will create four files for you as part of the

component:

Also when we had created the employee component through angular CLI, angular registered our

component class in the root module as below:

Directives
Directives help structure and modify your DOM. There are three types of directives in angular:

Components:

The templates in components structure your DOM. We have already seen them.

Structural Directives:

Change the layout of the DOM. For example, we have ngIf and ngElse statements that help decide

whether to display a particular element or not.

Now let’s create an employee class as follows. We don’t know its type, so we have defined it as an

array of any type. We can create an employee class separately and we could have defined

employees as an array of that class. But for our demo purpose, we don’t need it.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

employees : any[] =[{

 "employeeId" : 1,

 "employeeName" : "Tuba",

 "projectId":100

 },

 {

 "employeeId" : 2,

 "employeeName" : "Atul",

 "projectId":101

 },

 {

 "employeeId" : 3,

 "employeeName" : "Theran",

 "projectId":101

 }

]

Before we display employees in our view, lets add bootstrap, so that we can get a responsive UI. This

can be done easily by typing in the following command:

npm install bootstrap

Before we can use bootstrap classes in our employee.component.html, we need to import the styles

in style.css as below:

1 @import "~bootstrap/dist/css/bootstrap.min.css"

Write the following code in employee.component.html:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

<div class="container">

 <h2>Employee List</h2>

 <div class="table-responsive">

 <table class="table" *ngIf = 'employees && employees.length' >

 <thead>

 <tr>

 <th>Employee Id</th>

 <th>Employee Name</th>

 <th>Project Id</th>

 </tr>

 </thead>

 <tbody>

 <tr *ngFor = 'let employee of employees'>

 <td>{{employee.employeeId}}</td>

 <td>{{employee.employeeName}}</td>

 <td>{{employee.projectId}}</td>

 </tr>

 </tbody>

 </table>

 <div>

</div>

Here we have used two structural directives : ngIf & ngFor. If employees exists in the

employee.component.ts file and it’s length is more than 0, then the table will be displayed. Also we

have used the ngFor structural directive to loop over the employees.

Structural directives always begin with an ‘*’.

We also need to add the employee component directive to app.component.html as below, so that it

is displayed in the browser.

1 <app-employee></app-employee>

The directive ‘app-employee’ is mentioned in the metadata of employee.component.ts:

Now let’s go to our browser. We can see a table displayed as below:

Attribute Directives

These are directives that change the appearance or behaviour of a DOM element. For example:

ngStyle.

Let’s modify our code to use ngStyle as below:

1 <td [ngStyle]="{'background-color':employee.projectId == '101' ? 'green' : 'red'

}">{{employee.projectId}}</td>

The above condition will apply a particular style after evaluating a particular expression. If the

projectId is 101, the background for the column will be green else red. Our browser will look as

below:

This was all about directives. Let’s proceed to understand the different types of data bindings in

Angular in the next part of this Angular Beginner’s course.

Happy learning!

This article was originally published on my website taagung.

https://taagung.com/angular-tutorial-3/
https://taagung.com/angular-tutorial-2/

